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ABSTRACT

Unmanned aerial vehicles (UAVs) have emerged as cost-
effective and versatile robotic systems for a wide range of ap-
plications, including search and rescue, environmental monitor-
ing, and surveillance and reconnaissance. However, their limited
endurance—often less than 30 minutes—restricts their potential
for long-term, continuous operations. To overcome this limi-
tation, UAVs can be controlled to land on moving Unmanned
Ground Vehicles (UGVs) for recharging, effectively extending
their operational duration based on the UGV’s ability to carry
portable charging pads. While UAV landing on moving UGVs
has been explored in indoor environments equipped with mo-
tion capture (MOCAP) systems, this problem has not been thor-
oughly addressed in outdoor scenarios where Geographical Po-
sitioning System (GPS)-based localization offers significantly
lower positional accuracy compared to MOCAP systems. Our
approach addresses this challenge by employing GPS to track
the UGV’s position during the initial phase. Once a special tag
called the ArUco marker mounted on the UGV comes into view
of the UAV’s downward-facing camera, the system switches to

* Address all correspondence to this author.

a vision-based tracking mode. The ArUco marker position data
is processed with a least square estimate to obtain a smooth, re-
liable estimate of the UGV velocity. Then, combined feedfor-
ward and feedback control strategies ensure the precision land-
ing of the UAV on the moving UGV. Our control algorithm has
demonstrated reliable landings across a range of UGV speeds.
Additionally, we demonstrate that using a ROS2-based modular
framework enables standardization and scalability, allowing the
system to be adapted to multiple UAV-UGV platforms in future
deployments.

UAV-UGY, Precision Landing, PID, ROS2, PX4, Least
square regression

1 Introduction

Recent improvements in computational capabilities, sensors,
and mechanical design have driven automation in various fields.
Robotics solutions, including the coordination of several hetero-
geneous robots, have been implemented to tackle increasingly
challenging tasks. One significant problem in this context is the
routing between an aerial vehicle (UAV) and a ground vehicle
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(UGV). In tasks such as surveillance, assessment, maintenance,
or rescue operations, the agility and aerial perspective of a drone
can help identify potential fire hazards [1] or areas affected by
disasters [2] [3], allowing for fast and precise support. However,
drones alone are often insufficient; their small batteries limit their
overall mission time. In contrast, a ground vehicle, especially
one with wheels, has movement constraints since it requires suit-
able terrain to navigate. Nonetheless, it has a larger storage ca-
pacity for batteries, which can be used to recharge drones and
extend their operational life [4].

Throughout the course of the mission, the aerial vehicle will
initiate its deployment from the ground vehicle, traverse to pre-
determined waypoints, and ultimately execute a precise landing
atop the UGV to facilitate recharging. This application possesses
substantial potential, as the UGV can sustain its operational ob-
jectives concurrently with the UAV’s activities. This function-
ality suggests that the UAV has to be capable of performing
landings on both stationary and dynamically moving platforms.
Among the various operational phases delineated, the landing
phase represents a critical juncture that illustrates the most sig-
nificant synergy between the UGV and UAV. Consequently, this
study will concentrate specifically on the intricacies and implica-
tions of this phase.

The problem of a UAV landing on a static platform has
been extensively researched, especially in relation to landing on
recharging stations [5].In order to achieve accurate landing per-
formance, it is essential to address two principal challenges: tar-
get identification and the precise control of movement necessary
for effective landing on the designated target.

For the initial challenge, a variety of methodologies have
been proposed to enhance landing capabilities in diverse condi-
tions. One approach employs infrared sensors (like IR-LOCK)
to facilitate landings during nocturnal periods [6]. However, this
method presents significant limitations in sunlight conditions,
which may hinder the system’s overall recognition capabilities.
The most widely utilized technique relies on visual camera sys-
tems that leverage fiducial markers, including ArUco markers [7]
and AprilTags [8]. These markers exhibit rapid and reliable de-
tection characteristics; nonetheless, they are susceptible to dis-
tortion phenomena if the camera is not precisely aligned with
the marker [9]. Furthermore, advanced vision algorithms, such
as mYolo [10], have been implemented to bolster detection effi-
ciency. Recent investigations have also explored the synergetic
integration of vision and infrared techniques to enhance robust-
ness [11].

Recent investigations have focused on dynamic precision
landing, representing an advancement over static landing tech-
niques. This concept entails the interaction with a moving target,
such as an unmanned ground vehicle (UGV) or an unmanned
surface vehicle (USV) [12]. In the specific context of UAV-UGV
interactions, several practical implementations have been docu-
mented, particularly in indoor environments [13] [14]. However,

these implementations are often constrained by the size of the
drone and rely on motion capture systems for control.

Transitioning to outdoor scenarios introduces several com-
plexities, particularly in terms of coordination between the UAV
and UGV. For instance, Priambodo et al. [15] propose a hybrid
GPS-vision algorithm that effectively identifies and enables land-
ing onto static platforms. In dynamic scenarios, such as when the
UAV aims to land atop a UGV moving at a constant speed, vari-
ous methodologies have been explored. Some approaches focus
on estimating the UGV’s velocity to anticipate its trajectory, al-
lowing the UAV to execute a free-fall landing [16]. Alternatively,
other methods involve the implementation and continuous tuning
of a PID controller to facilitate the landing process [17]. While
this latter approach is valid, it requires the UGV to stop once the
drone was above it to land correctly and we want the drone to
land regardless the movement of the UGV.

In this study, we present a novel methodology aimed at ad-
dressing the challenges associated with landing maneuvers in dy-
namic environments where the platform is in continuous motion.
By employing a least squares regression algorithm to accurately
estimate the velocity of the ground vehicle, we effectively miti-
gate the velocity differential between this and the drone. Subse-
quently, we utilize a Proportional-Integral-Derivative (PID) ve-
locity controller to establish a precise descent velocity profile for
the drone to follow. Our findings demonstrate that the perfor-
mance achieved under these conditions is comparable to that of
the precision landing algorithm traditionally utilized for station-
ary landing pads, all while maintaining consistency through the
application of PID controller parameters optimized in static sce-
narios. Furthermore, we successfully achieved a controlled land-
ing trajectory, thereby reducing the inaccuracies typically asso-
ciated with free fall dynamics.

We tested the developed algorithm for different velocities
of the moving platform and proved the effectiveness by lever-
aging the Gazebo environment [18], always thinking of the fu-
ture hardware implementation and the generic characteristics of
each robot. The remaining paper is organized as follows: Sec. 2
presents the overall high-level control algorithm and its compo-
sition, Sec. 3 presents the developed algorithm for the landing
procedure, Sec. 4 details the simulation models used for testing
and the PID tuning procedure, Sec. 5 highlights the simulation
results, Sec. 7 provides conclusions, and Sec. 8 outlines future
works.

To manage drone movement effectively and facilitate
smooth, rapid landings, extensive research has been conducted
into model-based simulations [19] [20] and the application of
digital twins [21] for estimating optimal landing trajectories.

2 Mission Planner: High level controller
To advance collaboration and communication among diverse
robotic platforms, notably Unmanned Aerial Vehicles (UAVs)
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and Unmanned Ground Vehicles (UGVs), we have formulated
a high-level architectural framework. This architecture is de-
signed to be agnostic of specific robotic systems, thereby facil-
itating its applicability across a broad spectrum of robotic tech-
nologies. It is adept at interfacing with low-level controllers such
as PX4 [22] and Ardupilot [23] utilized in drone operation, thus
enabling seamless integration and enhanced interoperability be-
tween varying robotic entities. We capitalized on the capabilities
of ROS2, which is particularly effective in facilitating the cre-
ation of a modular control structure. The central idea is to imple-
ment a mission designer that defines the mission parameters and
outlines the sequence of actions each robot must undertake. This
mission designer generates a YAML file [24] for each robot, de-
tailing the actions to be performed along with the estimated time
needed to complete it and some associated parameters. For in-
stance, if a robot is required to navigate to a specific location, the
coordinates of that destination would be included as parameters.

The architecture consists of four main components as shown
in Figure 1.

1. A mission manager node that receives high-level commands
either from a YAML file for pre-planned missions or via a
topic for real-time commands.

2. A collection of actions that serve as commands for the robot.

3. A robot state node that continuously sends feedback to the
robot.

4. A command manager node is responsible for interacting
with the low-level system, such as the motors or the local
low-level controller if already implemented.

The benefits of this approach are that it enables standardiza-
tion and scalability. Standardization enables integration on any
hardware by suitably modifying the command manager and state
node. Scalability allows one to add any number of robots to the
system.

2.1 Mission Manager

The mission manager node acts as the interface between the
robot and the external environment. It is tasked with processing
all information related to the robot, including input from the ex-
ternal mission planner node, and managing the actions the robot
needs to perform. Throughout this process, it consistently moni-
tors the elapsed time to ensure smooth transitions between phases
and to identify any emergency situations that may require halting
the robot’s normal operations.

As previously mentioned, the mission manager retrieves
commands from a YAML file but also listens for online com-
mands through a specific topic. These online commands may
include emergency conditions or mission replanning, enabling
the node to be reinitialized during operation to adapt to changes,
such as in re-routing applications.

Upon startup, the mission manager loads all commands from

MISSION
PLANNER
|
Mission manager Mission manager
Actions Actions
Command  Robot Robot Command
manager state state manager
Robot1 Robot N

FIGURE 1: Proposed high-level control architecture for multi-
robot applications. The system consists of several components:
a common mission planner node that organizes and designs spe-
cific missions for each robot, which are then passed to the action
node. The action node decomposes complex tasks into smaller,
manageable tasks and hands them off to the command manager
for the execution of low-level operations. Additionally, a robot
state node provides essential information to ensure the effec-
tive functioning of the actions, with all robots in the network
able to access each other’s state node to enhance cooperation.
Notably, robot state communication is action-driven and task-
specific, avoiding continuous streaming.

the YAML file and processes them sequentially, executing each
corresponding action. Once a command is successfully executed,
the mission manager advances to the next command in the queue.
This process continues until all commands have been completed.

If any action is interrupted before it is fully executed, the
mission manager sends an emergency command to the robot,
prompting it to either execute an emergency landing (in the case
of a drone) or come to a complete stop (for ground robots).

2.2 Actions

The actions are used to break down complex tasks into man-
ageable components. They serve as the connection between the
mission manager, which acts as the high-level controller, and the
command manager, responsible for executing simpler actions.
They also connect with the robots’ state nodes and obtain from
them any information that is required to complete the mission
correctly.

Several actions, such as takeoff, moving to location, and
landing, have been implemented for drones, along with moving
to location for ground vehicles.
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2.3 Robot State

The robot state node is responsible for keeping track of the
important characteristics of each robot and all the information
that may be needed. It interfaces directly with the robot and the
actions that are being performed. Since the logic is executed
within the action framework, the state node provides all relevant
information about the robot. For example, it can convey details
such as the robot’s battery level or whether an emergency con-
dition has been triggered. The node also retains information re-
garding the robot’s odometry, specifically the estimation of its
position, linear and angular velocity, and linear acceleration. For
instance, in the case of landing, the drone’s landing action inter-
acts with the ground vehicle state node to acquire the vehicle’s
global position.

Given that the important information provided by the robots
is largely similar, we decided to utilize a single message type
for all of them. This message includes essential data that all
robots share, such as their global positions, velocities and ac-
celerations, as well as specific information pertinent to individ-
ual types of robot, such as whether a drone is currently flying
or not. The advantage of having a uniform message across dif-
ferent robot platforms is that all robots in the network can ac-
cess this information. This is particularly beneficial in scenarios
like precision landing, where the drone needs to know the esti-
mated position of the ground vehicle during the initial phase of
landing to successfully reach it. Importantly, robot state com-
munication is action-driven and task-specific: state information
is requested by the aerial vehicle only during relevant coordina-
tion actions (e.g., landing) and the data exchange stops once the
task is completed. This selective communication strategy avoids
unnecessary continuous streaming, reducing network load while
still ensuring safe and effective cooperation. The state node has
been configured to operate at 100 Hz, which aligns with the up-
date rate of the PX4 autopilot for position and velocity feedback.
This ensures that all software components have access to up-to-
date state information with minimal latency.

2.4 Command Manager

The command manager node, like the state node, is highly
dependent on the specific robot that is being used. Its primary
function is to convert low-level control commands, such as po-
sition or velocity commands, into a format that the robot can
execute. It does not perform complex logic; instead, it simply
executes the commands as they are received. This node acts as a
bridge between the ROS2 algorithm and the low-level controller.

For example, in the case of a drone, the command manager
is responsible for sending any command received to PX4 in the
format required by the controller. This integration can be one
of the most challenging aspects, as it is highly dependent on the
specific robot. However, if a family of robots is controlled in a
consistent manner, such as drones using PX4, this node can be

reused effectively.

The command manager sends control commands at 100 Hz,
which represents a trade-off between system reactivity and com-
putational efficiency. Operating at 100 Hz ensures timely com-
mand updates, enabling smooth and accurate maneuvers without
overloading the system with excessively fast command cycles.

3 Landing Algorithm

We discuss the operational framework that enables the un-
manned aerial vehicle (UAV) to land on the moving unmanned
ground vehicle in a diverse array of scenarios.

Initially, the UAV is positioned at a considerable distance
from the UGV, such that it cannot detect the latter visually
through its onboard camera. Upon the initiation of the landing
command, the UAV undertakes a four-phase process:

1. Search for Unmanned Ground Vehicle (UGV): The initial
phase involves the Unmanned Aerial Vehicle (UAV) deter-
mining the absolute coordinates of the UGV by establishing
a connection to the UGV state node, enabling continuous
acquisition of the UGV’s estimated GPS location. Subse-
quently, the UAV navigates toward this predetermined posi-
tion while concurrently executing a search for the UGV. The
UGV is equipped with an identification tag, specifically an
ArUco marker. During its approach to the UGV, the UAV
utilizes its downward-facing camera to detect the marker;
upon successful detection, the UAV initiates a tracking se-
quence to estimate the UGV’s velocity.

2. Estimation of UGV Velocity: Upon the detection of the
ArUco marker affixed to the UGV, the UAV uses a least
squares regression algorithm to estimate the UGV’s veloc-
ity. Once the UAV reaches a satisfactory confidence level
in its velocity estimation, it proceeds to the next operational
phase.

3. Follow the UGYV: To facilitate the following maneuver, the
UAV adapts its control strategy from GPS-based position
reference to ArUco marker-based velocity reference. In this
configuration, the estimated velocity of the UGV is commu-
nicated to the PX4 flight control system, aligning the drone’s
x-y velocity with that of the ground vehicle while main-
taining a zero vertical velocity. A Proportional-Integral-
Derivative (PID) controller is subsequently utilized to mini-
mize the distance between the UAV and the UGV.

4. Landing on the UGV: Finally, when the UAV’s horizontal
distance from the UGV reduces below a defined error thresh-
old for a predetermined duration—signifying the UAV’s po-
sition directly above the UGV and synchronization of their
velocities—the UAV initiates its landing maneuver. This
maneuver involves a descent toward the UGV with a con-
stant downward velocity.

Figure 2 illustrates the finite state machine utilized for the
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landing algorithm. Upon a thorough examination of the control
scheme presented, the following delineates the primary compo-
nents identified within the framework.

3.1 Position Control

This phase employs a GPS-based position reference control,
whereby the coordinates of the ground vehicle serve as the ref-
erence position for the drone. Once the drone determines the
global position of the ground vehicle, this information will be
transmitted to the low-level PX4 control algorithm, responsible
for executing the navigation process. Here, the PX4 controller
evaluates the torques of the propellers’ motors by taking as input
the difference between the desired position and the actual posi-
tion of the drone. The latter is estimated by using an extended
Kalman Filter to combine the GPS position and the estimation
from the drone’s IMU.

3.2 Tag Detection

After careful consideration, we selected ArUco markers for
our simulation, primarily owing to their compatibility with the
PX4 Software In The Loop (SITL) simulation environment and
the availability of robust software libraries for their detection.

We utilize the aruco tracker package offered by ARK Elec-
tronics [25] as it offers seamless integration with both ROS2 and
PX4. The tracker operates at a fixed frequency of 30 Hz.

The velocity control in PX4 operates by providing the soft-
ware with velocity values in the North-East-Down (NED) refer-
ence frame (where the x-axis is oriented along the North, y-axis
along East and z-axis points downward). Consequently, to per-
form our calculations, we need to transform the position and ori-
entation of the tag from the camera frame to the NED reference
frame. Using the notation X}, to denote the position ¥ of object b
in reference frame a, and R to represent the rotation matrix R of
frame d with respect to frame ¢, we can express the transforma-
tion as:

X»NE RNED—mlm _’_X*NED (1)

tag cam *tag cam

In this equation, RYED and ®VEP denote the rotation ma-
trix of the camera frame and the position of the camera in the
NED reference frame, respectively, both of which are fixed val-
ues. Meanwhile, ¥7¢" = {x{7", yias" ziaq' } represents the position
of the center of the tag as detected by the camera. We have not
considered the orientation of the tag since our primary objective
is for the drone to land on the target, irrespective of the tag’s

attitude.
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FIGURE 2: Flowchart of the landing action algorithm. J, and J,
represent the distances between the center of the tag and the cen-
ter of mass of the drone in the x and y directions, respectively. &
is the hyperparameter threshold that activates the landing condi-
tion.

3.3 Estimation phase

During the estimation phase, the drone is maintained at an
altitude optimized for the detecting algorithm to effectively iden-
tify the target. This altitude is strategically selected to ensure it
is not excessively low, thereby mitigating the risk of the ground
vehicle exiting the camera’s field of view (FOV) before the algo-
rithm can accurately assess the UGV’s velocity.
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FIGURE 3: Simulation of a drone (Holybro X500) and ground
vehicle (Husky A200) operating in a Gazebo environment. The
ground vehicle is equipped with an Aruco Marker, facilitating
the implementation of the precision landing algorithm. The im-
age on the right displays the live feed from the drone’s camera,
the ArUco marker reference frame can be seen in green, red and
blue.

Upon detection of the tag ID, the drone will stabilize its po-
sition and continuously track the tag’s location as the UGV tra-
verses the landscape. Concurrently, the system logs the current
time, and for each localization instance, it stores both the time
of localization and the corresponding positional data. At each
discrete time step, a least-squares logistic regression analysis is
conducted for both the x and y components of the tag’s trajec-
tory. Once the discrepancy between the newly estimated velocity
and the previously determined velocity falls below a specified
threshold, the slope of the resulting estimated curve is subse-
quently documented. This slope is then used as an estimate of

the velocity of the UGV.

In the process of updating localizations, three critical param-
eters, ty, Xy, and yy, are utilized to refine a set of six cumulative
summations: YN, YN, YN x;, YN xiti, YV yi, and YN yit;. Ad-
ditionally, the variable N represents the total number of obser-
vations recorded. We keep all recorded values for estimation as

convergence is fairly quick as noted in the results.

NYNxiti =¥Vt YN x;
NYY 2 — (XN 6;)?

NYNyiti — YNty N y;

NYY 2 — (X 1)
()

Vest x,N = s Vest,y,N =

3.4 Velocity Control

For the Tag-based velocity reference control, we divide it
into two parts: the horizontal plane (xy plane) and the vertical
direction(z).

3.4.1 Horizontal movement The horizontal control
is employed in two phases: the following phase and the landing
phase. The approach differs slightly between these two scenar-
ios. During the following phase, the objective is to minimize the
distance in the x and y directions between the drone’s center of
mass and the tracking tag. In contrast, during the landing phase,
the drone aims to land while maintaining the estimated UGV’s
velocity.

We control the x-axis velocity separately from the y-axis ve-
locity, thus simplifying the control. Our objective is twofold: we
aim to minimize both the position and velocity differences be-
tween the drone and the landing platform.

To achieve velocity and position tracking of the UGV,
we use a feedforward compensation on the UGV velocity and
proportional-integral-derivative control on the UGV position.
Our control is:

vi(t+1) =vivey +vipp(t), (3)

where i designates either the x or y axis.
1
vip(t+1)=P-8(1)+1-Y &(j)+D-(8(t)— &t —1)) 4)
j=0

Here, P, I, and D represent the proportional, integral, and
derivative gains. The term &;(¢) is instead the error between the
position of the drone and the tag as obtained by the detection
algorithm.

The condition for transitioning from the following phase to
the landing phase is determined by ensuring that the quantity

62 + 5}2 remains below a defined hyperparameter 6, for at least
one second.

3.4.2 Vertical movement In the analysis of vertical
dynamics, two distinct phases are delineated: the following
phase and the landing phase. During the following phase, it is
observed that the drone does not align its position with that of
the ground vehicle; however, the velocities between the two enti-
ties remain approximately equivalent, as previously estimated. It
is imperative to maintain the drone at an altitude sufficiently low
to ensure the continued detectability of the tag and its proximity
to the camera apparatus. In this context, the drone may be po-
sitioned relatively closer to the ground vehicle, as our objective
is to achieve the centrality of the tag within the camera’s field of
view (FOV). To facilitate this alignment, we have implemented
a function that adjusts the reference altitude downward at a rate
of 0.2 m/s, that is to help the drone achieve optimal centering
with respect to the UGV. The reference altitude is defined as the
positive hyperparameter z,., which is calibrated in accordance
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with the dimensions of the tag and the specific parameters of the
implementation. The control of the command velocity in the z-
direction is governed by a proportional control algorithm.

v(t4+1) =P, (he” = zrer) (5)

In this equation, P, represents the proportional gain, which
depends on the specific drone. It is important to note that, due to
the definition of the North-East-Down (NED) reference frame, a
negative velocity indicates an upward movement.

4 Simulation Environment

To test the algorithm, we opted to utilize the functionali-
ties of Gazebo, specifically Gazebo Harmonic, since PX4 al-
ready has a Software-in-the-Loop (SITL) implementation with
it. Unfortunately, the ground vehicle we planned to use only
supports Gazebo Ignition, which required us to develop the al-
gorithm from the ground up. We chose Gazebo for its interop-
erability with ROS2 and its powerful graphical interface, which
was beneficial for testing. For ROS2, we used the Humble ver-
sion, as it is one of the latest releases, and the previous version
has reached its end of life. Below is a description of all the mod-
els used during the simulation and how we integrated them.

4.1 UAV Model

The drone model we utilized is the default Holy-
bro X500 drone used for simulation. We chose the
version with a downward-mounted camera, referred to as
x500_mono_cam_down because it was necessary for detecting the
tag of the ground vehicle.

To integrate PX4 with ROS2, we used XRCE-DDS to create
a bridge between the two systems, allowing for seamless connec-
tivity with the drone.

4.2 UGV Model

For the UGV model, we aimed to make the simulation as
close to real hardware as possible, particularly concerning the
dimensions of the ground vehicle. This understanding was cru-
cial for determining the appropriate size of the tag to use and
for better calibrating the altitude at which the drone should begin
searching for the tag.

Gazebo provides a variety of robot models for use in the
simulator, and we chose to use a basic version of the Husky
robot. This version has the fewest components, and we placed a
0.4mx0.4m ArUco marker on top of the main plate of the Husky.
Additionally, we used velocity commands to control the wheels,
allowing the Husky to move in the desired direction at the speci-
fied speed.

We have set the speed limit of the ground vehicle to 1 m/s,
which is the maximum velocity of the real ground robot.

4.3 World Model

Once we had fully defined the models for both the ground
vehicle and the drone, we needed to establish the world environ-
ment for the simulation. To achieve this, we used the “empty
world,” which is the simplest configuration featuring just the
physics plugin and nothing else, since we were interested in just
proving the effectiveness of the algorithm.

Table 1 delineates various characteristics of the robots em-
ployed in this study.

Holybro X500 Husky A200
type UAV UGV
dimensions (mm) | 500 x 500 x 160 | 990 x 670 x 390

weight (kg) 2 50
max speed (m/s) 15-20 1

TABLE 1: The specific characteristics of the Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) uti-
lized in the simulation.

4.4 Landing Control using PID control

With all the components appropriately configured, it became
essential to optimize the Proportional-Integral-Derivative (PID)
controller to guarantee that the drone could achieve its desired
position and execute a precise landing. The controller takes as in-
puts the current distances between the drone’s center of mass and
the tag’s center along the x and y axes, denoted as 6, (¢) and J,(¢),
which correspond to the north and east components of the North-
East-Down (NED) coordinate system. It subsequently generates
a reference velocity as presented in Eq. 4.

In this context, P, I, and D denote the tunable parameters
that dictate the system’s response behavior. The variable i can
represent either the x or y axis. Notably, we employ the iden-
tical set of parameters for regulating the velocities along both
the x and y axes, thereby ensuring a uniform approach to control
within the two-dimensional framework. Additionally, the veloc-
ity input is constrained within the range of [-3 m/s, 3 m/s] to mit-
igate the occurrence of excessive oscillations. This limitation is
implemented to ensure system stability and prevent undesirable
dynamic responses.

In the static scenario, the unmanned ground vehicle (UGV)
remains stationary while the drone is dispatched. After the drone
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moves away, it acquires the UGV’s local coordinates and returns
to its original position. Once the drone detects the tracking tag,
the PID control is activated. For the tuning process, we began by
applying the method presented by Wescott et al. [26]. The objec-
tive is to have the drone reach the center of the tag as quickly as
possible while minimizing oscillations around it.

In the dynamic scenario, the unmanned aerial vehicle em-
barks on its flight shortly prior to the commencement of move-
ment by the unmanned ground vehicle. Following takeoff, the
UAV is deployed for a limited duration before the UGV ini-
tiates transmission of its current positional data. As the UAV
identifies the UGV, the estimation algorithm for positioning
activates, determining the UGV’s velocity. The proportional-
integral-derivative (PID) tuning parameters employed previously
in the static scenario are applied once more. Upon achieving
alignment between the UAV’s velocity and positional data with
those of the UGV, the landing phase is started.

5 Results

The testing conducted within the simulation environment
yielded several noteworthy factors warranting comprehensive
analysis. Initially, we selected an altitude of 7 meters above the
ArUco marker, as the tag detection algorithm exhibited signifi-
cant challenges in accurately identifying the position of the tag,
particularly during instances when the ground vehicle was in mo-
tion. Furthermore, we established a threshold value of 0.1 meters
for centering the drone, which proved to be sufficiently precise
considering that the tag measures 0.4 meters in size. In address-
ing the velocity error associated with the estimation algorithm,
we determined an optimal value of 0.05. This choice was made
to ensure a highly reliable estimation while simultaneously main-
taining computational efficiency and preventing excessive algo-
rithmic latency.

In this study, we conducted a series of tests to evaluate
the algorithm’s performance under varying velocities of the Un-
manned Ground Vehicle (UGV). The simulation was designed
with the ground vehicle spawned at the coordinates (0,0) within
the North-East-Down (NED) reference frame, while the drone
commences its operation directly above it. The simulated sce-
narios consisted of initially sending the drone to the position (-
10, 20) m while the UGV’s velocity was systematically varied
at intervals of 0 m/s, 0.2 m/s, 0.4 m/s, 0.6 m/s, and 0.8 m/s, 1m/s
along the x-axis. Fig. 4 shows the behavior of the estimation
algorithm for different velocities of the UGV, it can be seen that
the algorithm is very fast at estimate the velocity since in all of
the cases it was able to estimate it within 4 seconds.

Fig. 5 presents the position of the ground vehicle and of the
drone during a complete mission when the velocity of the UGV is
set to 0.4 m/s. In the figure, the landing phase is highlighted with
different colors representing the different phases that compose
it. It can be seen that the drone takes around 25 seconds to land

Velocity estimation error

Velocity [m/s]

0.0 0.5 1.0 1.5 2.0 25 3.0 35
Time [s]

FIGURE 4: The graph illustrates the velocities estimated by the
least square algorithm for different UGV ground velocities.

on the UGV from when the command is given. Among the four
parts, the estimation takes the highest amount of time of around
12 seconds. The search time is of course related to the initial
position of both the drone and the ground vehicle and therefore
is highly variable.

In the process of tuning the control gains, we focused on two
primary performance metrics: settling time and oscillation am-
plitude. Settling time was defined as the duration during which
the drone’s relative position to the target, in both the x and y axes,
remained within a specified threshold of 6; = 0.1 m. This inter-
val was measured following the transition from position control
to velocity control commands. Additionally, the amplitude of os-
cillations was evaluated by determining the maximum overshoot
produced by the control algorithm after this transition. The tuned
hyperparameters are set to P = 0.45, 1 =0.05, and D =0.5.

6 Discussion

As anticipated, we encountered minimal difficulties while
fine-tuning the PID controller in the static scenario—specifically,
when the ground vehicle remained stationary. By estimating the
velocity of the ground vehicle and then imposing that as a base
reference for the drone, we were able to obtain the same results
as the static scenarios also while the ground vehicle was moving.

The findings concerning the landing algorithm indicate that
both the estimation and the PID control algorithms yielded
highly favorable results, demonstrating the capability to execute
landing maneuvers with remarkable speed and efficacy. How-
ever, certain limitations were identified, particularly in scenar-
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FIGURE 5: The graphs illustrate in red the position of the drone
and in blue the position of the ground vehicle with respect to
time for a mission where the ground vehicle moves along the
x-axis at a velocity of 0.4 m/s. The four phases of the landing
are highlighted: Search (red), Estimate (green), Follow (yellow),
Land(blue)

ios where the drone approaches the target at a minimal distance.
In such instances, there exists a brief interval during which the
drone operates without visual feedback, relying solely on the
estimated velocity for guidance. Despite these challenges, the
drone consistently achieved targeted landings, albeit occasion-
ally deviating slightly from the center. This phenomenon is
largely attributable to the constraints imposed by the size of the
visual tag, which must remain detectable from elevated altitudes.

The high-level control architecture utilized in ROS2 has
demonstrated considerable efficacy in managing inter-robot com-
munication and enhancing coordination during task execution.
By developing an action server that delineates the requisite com-
mands, this new algorithm can be seamlessly incorporated into
the existing architecture.

7 Conclusions

This paper introduces a novel algorithm designed for the
precision landing of aerial drones atop mobile ground vehicles.
The proposed algorithm has undergone extensive simulations,
demonstrating very good performances in landing operations. A

key feature of this approach is the implementation of a linear
regression filter for estimating the velocity of the ground vehi-
cle. This design choice contributes to the algorithm’s overall
efficiency, allowing the dynamic landing scenario to be treated
similarly to a static one through the application of a straightfor-
ward PID velocity controller. The results underscore the algo-
rithm’s efficacy and potential for real-world applications in drone
navigation and autonomous landing systems.

8 Future Works

The findings delineated in this paper are currently limited to
a simulation framework; thus, a logical and essential next step
would entail the implementation and empirical assessment of
the proposed control strategy in a real-world outdoor environ-
ment. This transition is critical, as it encompasses a range of
additional complexities, including networking and communica-
tion challenges that necessitate careful consideration and reso-
lution. Moreover, there exists the potential for enhancements to
be directed toward the velocity control algorithm. Specifically,
the traditional PID controller could be supplanted with a more
advanced model-based control approach. Additionally, modifi-
cations aimed at refining the velocity estimation component of
the algorithm could be pursued, expanding its applicability be-
yond scenarios characterized by constant velocity.
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